Suppose that is a function such that is constant for almost all , and is constant for almost every . Prove that is constant ctp (with respect to u, where u is the Lebesgue measure).

Hint: Assume the contrary. Then it sets you and you have positive measure. Use Fubini to prove that each of these sets contains at least one vertical and one horizontal interval. Conclude.

Note: A function is constant ctp, if not constant in a set of measure zero.

For each y fixed