Page 108:
These satellite data have been used in combination with the historically recorded sunspot number, records of cosmogenic isotopes, and the characteristics of other Sun-like stars to estimate the solar radiation over the last 1,000 years (Eddy, 1976; Hoyt and Schatten, 1993, 1997; Lean et al., 1995; Lean, 1997). These data sets indicated quasi-periodic changes in solar radiation of 0.24 to 0.30% on the centennial time scale. These values have recently been re-assessed (see, e.g., Chapter 2).
Page 189:
Irradiance reconstructions such as those of Hoyt and Schatten (1993), Lean et al. (1995), Lean (2000), Lockwood and Stamper (1999) and Solanki and Fligge (1999), used in the TAR, assumed the existence of a long-term variability component in addition to the known 11-year cycle, in which the 17th-century Maunder Minimum total irradiance was reduced in the range of 0.15% to 0.3% below contemporary solar minima.
page 478:
In the previous reconstructions, the 17th-century ‘Maunder Minimum’ total irradiance was 0.15 to 0.65% (irradiance change about 2.0 to 8.7 W m–2; radiative forcing about 0.36 to
1.55 W m–2) below the present-day mean (Figure 6.13b). Most of the recent studies (with the exception of Solanki and Krivova, 2003) calculate a reduction of only around 0.1% (irradiance change of the order of –1 W m–2, radiative forcing of
–0.2 W m–2; section 2.7).
page 480:
The high-amplitude forcing history (‘Bard25’, Table 6.3) is based on an ice core record of 10Be scaled to give an average reduction in solar irradiance of 0.25% during the Maunder Minimum, as compared to today (Bard et al., 2000).